
封装	



Encapsulation 

•  Why	encapsulation	
– To	organize	
– To	protect		
– To	simplify	

							data	and	code 



Private	members 
•  Member	variables	and	functions	that	can	only	be	accessed	by	
other	member	functions. 



Private	members 

•  Which	ones	should	be	private?	
– Variables	and	functions	that	the	users	do	not	have	to	know	about	
– Variables	and	functions	that	should	not	be	used	directly	by	the	users		

•  to	keep	the	internal	correctness	and	consistency	of	the	data	in	the	object	
– Functions	that	are	not	recommended	for	directly	use	

•  e.g.	due	to	being	non-intuitive. 



Private	member 

•  Private	members	cannot	be	accessed	from	outside	the	class	
where	they	were	defined.	



Read/write	only	variable		



Function	matching	in	C++ 
•  What	is	function	matching	
– The	compiler	corresponds	function	calls	to	function	definitions	

•  Function	matching	in	C	(gcc)	
– Using	function	names	
– So,	every	function	should	have	a	unique	name	

•  Function	matching	in	C++	(g++)	
– Using	function	signatures	
– Every	function	should	have	a	unique	signature	
•  Name	uniqueness	is	not	required 



Function	matching	in	C++ 

•  What	is	function	
signature? 



Function	matching	in	C++ 

•  What	is	
function	
signature?	
–  			



what	is	the	signature?	



Constructors 

•  A	constructor	is	the	only	way	that	member	variables	are	
initialized	

•  Can	we	initialize	objects	in	a	class	in	different	ways?		
– Yes,	we	can	provide	more	than	one	constructor	in	a	class	
– Every	constructors	must	have	a	unique	signature	

•  i.e.	every	constructor	has	a	unique	parameter	list 



Constructors 
•  Example 



Two	special	constructors 
•  The	default	constructor	
– The	one	without	parameters	
– The	compiler	will	generate	it	if	
no	constructor	is	provided	

•  The	copy	constructor	
–  Is	used	to	initialize	by	copying	
an	existing	object	

– Typical	example	->	
– The	compiler	will	generate	it	if	
it	is	not	provided 



The	copy	constructor 
•  Example 



The	copy	constructor 
•  Copy	constructor	is	called	when	
–  Initialize	an	object	using	another	one	

–  Initialize	an	object	in	the	parameter	list	using	the	one	in	the	argument	list	
–  In	the	return	statement:	initialize	the	object	returned	to	the	caller	using	
the	object	returned	from	the	callee	



The	copy	constructor 

•  The	parameter	of	a	copy	constructor	must	be	a	reference	
– Student(const	Student	&	s)	
– Otherwise,	there	will	be	recursive	call	to	itself	

•  Student(Student	s)	ß	call	itself	when	trying	to	initialize	s	

•  Copy	constructor	is	usually	unnecessary	to	write	
–  It	will	be	auto-composed	if	it	is	not	provided	
– The	auto-composed	version	does	member-wise	copy 



The	copy	constructor 



The	copy	constructor 
•  Situations	where	we	need	our	
copy	constructor	
–  If	the	class	owns	resources,	such	
as	dynamic	memory,	file,		
CPU	resource,	network	
connections,		
whcih	we	must	define	different	
ways	to	copy	



Constructors	as	type	conversion	rules 

•  Conversion	
rules	between	
fundamental	
data	types	are	
defined	

•  How	can	be	
convert	
between	
objects	of	
different	
classes 


