YRS C++FE T

2021/02



Why learning C++

e Structural programming language

— Only include 3 syntactic structures
e Sequential, branching, loop, (function call)

— But is functionally complete

* How to make programming easier?

— A relatively direct mapping between human mind
and program code
 How? Enable you to describe objects in your program
— A better way to manage data and functions in
your code
 How? Enable your to write modular code



Compound data type E & Z(#azH

* Need to define an object before using it.

* How to define an object? By describing its

— Useful data (properties/values)

— The functionalities it provides (methods/
functions)

— In an abstract data type

e A class (28) contains the definition of an
object or similar objects
— The module (container) for all definitions



Class 25 and object X %

* Write a class in C++
class Student
{
public:
char name[20];
int 1id;

double age; // 18.5

};



Class and object

* Define an object (a variable) of the class
Student s;
strcpy(s.name, '"Cong Liu");
s.id = 12340001;
s.age = 18.5;



Class and object

* An object use a consecutive block of memory
— The size is the sum of the sizes of the member variables

— The member variables defined first locates in the front of
this memory

— What is the size of an object of the following class
class Student

{

public:
char name[20];
int id;

double age;
};



Class and object

* Assignment of an object as a whole
void some function (Student student) ({

}

void some function2 (Student & student2) { // tonm
student2.age += 1; // will change tom.age
}

int main() {
Student tom;
strcpy (tom.name, "Tom") ;
tom.id = 12345678;
tom.age = 18;

Student copy of tom;
copy of tom = tom; // will copy all member variables

some function(tom); // will copy to student
some function2(tom); // will pass the address of tome to student2


zhaoyp
打字机
//传tom的地址


Class and object

e Member functions
— As a module, a class function as a container for

* The objects’ member variables
* And the functions defined specifically for these objects
— Organize code better by grouping related things
together

» Easier reading and faster searching

— Next, we will use an example to show how C++ do
this



struct Student
{

Class a nd iigﬁbig;age;
object "

void read(Student & this obj) ({
cin >> this obj.id;

cin >> this obj.age;
e Member \ =03

const

¢ fu nctions void print(const Student * this obj)
cout << this obj->id << endl;
e C cout << this obj->age << endl;



Class and

object

Member

functions

C
C++

1 struct Student
2 A

int id;
double age;
};

void read(Student & this_obj) {
cin >> this obj.id;
cin >> this obj.age;

}

2 void print(const Student * this_obj)
cout << this_obj->id << endl;
cout << this obj->age << endl;

}
class Student // class
{
public:

int id;
double age;

// the first object parameter is hidden
// which is default as 'Student * this'
void read() { this

cin >> this->id;

cin >> this->age;
}

// 'const' is for 'const Student * this'
void print() const {

cout << this->id << endl;

cout << this->age << endl;

}

}; // class contains the functions


zhaoyp
打字机
省略的参数默认叫this 保留字


Class and object

* Calling member
functions

class Student

{
public:

void read() { ...
void print() const { ...

};

class School {
public:

void print ()
};

int main() {
Student tom;
School sysu;
tom.print() ;
sysu.print() ;

}

const { ...

}

}



Special member functions

* A flexible way in C++: use a function to
initialize objects of a class.

— This function is call a constructor 41 ER %

class Student

{
public:

char name[20];

// constructor
Student () {

strcpy (this->name, "NO NAME") ;
}

}

int main() {

Student some one, another;
cout << some_one.name << endl;
cout << another.name << endl;


zhaoyp
打字机
自动调用


Special member functions

MR EN to

\I‘\

e Similarly, C++ provide destructor
finalize objects

class Student

{
public:
Student () {
cout << "constructor" << endl;

}
// destructor
~Student () {
cout << "destructor" << endl;

}
}

int main() {

Student some one; // will call constructor here
} // will call destructor here



Special member functions
 An example

class Student
{
public:
char * name;
Student () {
this->name = new char[20];
strcpy (this->name, "NO NAME") ;
}
void assignName (char newName[]) ({
delete[] this->name;
this->name = new char[strlen (newName) + 1];
strcpy (this->name, newName) ;
}
~Student () {
delete [] this->name;
}
}

int main() {
Student some_one;
some name.assignName ("Mark Zuckerberg");



—. 5

Ul
L=
AT

Operator overriding ZEVERT

e Operators are defined
— For most basic types
— But not for objects

* Operator overriding is to define operators
— Involving any object
— Using functions
e Operator functions are matched according to

— The name of the operator
— The types of the operands


zhaoyp
打字机
操作符重载


Operator overriding
 Example

class Student

{
public:

int gpa;
};

bool operator > (Student & sl, Student & s2) ({
return sl.gpa > s2.gpa;
}

int main() {
Student sl;
Student s2;
sl.gpa = 100;
s2.gpa = 90;
cout << (sl > s2);


zhaoyp
打字机
操作符函数


Operator overriding

° Example 2- c{:lass Student

public:
int gpa;

bool operator > (Student & s2) ({
return this->gpa > s2.gpa;
}

};

int main() {
Student sl;
Student s2;
sl.gpa 100;
s2.gpa 90;
cout << (sl > s2);



VR 7] et

o BRI RREUE NN SR AL

o U R EUR NN B R AR AR AR P
z]

o R BR RS A R AT X )

o K435 PR ORI IE 0T R R B [X )

o TR PR RN A4 bR ZHY 57 7]




